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Abstract

The mesoionic heterocycle 2,4-diphenyl-1,3-oxathiolium-5-olate (5) undergoes a tandem 1,3-dipolar cycloaddi-
tion reaction with cycloocta-1,5-diene (6) to give cycloadduct sulfide7 in modest yield. Oxidation to sulfone8 and
photochemical extrusion of SO2 affords 9,10-diphenyltetracyclo[6.2.0.04,10.05,9]decane (9) in high yield. © 2000
Elsevier Science Ltd. All rights reserved.
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1,3-Dipolar cycloaddition reactions of mesoionic heterocycles, such as sydnones1 (1,2,3-
oxadiazolium-5-olates), münchnones2 (1,3-oxazolium-5-olates), isomünchnones3 (1,3-oxazolium-4-
olates), thioisomünchnones4 (1,3-thiazolium-4-olates) and related conjugated heterocyclic mesomeric
betaines,1 have seen a resurgence of applications to synthesis.2,3

In continuation of our interest in 1,3-dipolar cycloaddition reactions of sydnones and münchnones with
cyclic dienes4 and nitro-substituted heterocycles,5 we now report that 2,4-diphenyl-1,3-oxathiolium-5-
olate (5), a mesoionic heterocycle that has been neglected since its original generation and trapping
(with dimethyl acetylenedicarboxylate),6 undergoes a tandem 1,3-dipolar cycloaddition reaction with
cycloocta-1,5-diene (6) to afford 9,11-diphenyl-10-thiatetracyclo[6.3.0.04,11.05,9]undecane (7) in 32%
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yield after column chromatography (Scheme 1). Mesoionic5 was generated in situ fromS-benzoyl-�-
phenylthioglycolic acid6 and diisopropylcarbodiimide (DIPC), conditions that we have used previously
to generate münchnones.4b,5 Cycloadduct7 was fully characterized.7,8

Scheme 1.

The facile photochemical elimination of sulfur dioxide from benzylic sulfones9 suggested to
us that the sulfone8 derived from 7 might undergo a similar extrusion of SO2 to form 9,10-
diphenyltetracyclo[6.2.0.04,10.05,9]decane (9). Indeed, as shown in Scheme 2 this sequence has been
realized. Treatment of sulfide7 with m-chloroperbenzoic acid (m-CPBA)10 gave sulfone8 in 94%
yield.11 After some experimentation12 it was found that photolysis of sulfone8 in 1:1 benzene–acetone
(350 W Hanovia medium pressure lamp, pyrex filter, 2 h) gave the desired hydrocarbon9 (mp
105–105.5°C) in 95% yield.13 The identity of9 was confirmed by comparison with a known sample,
prepared by photolysis of6 and diphenylacetylene to give9 (mp 105–106°C) in 48% yield.14 The two
samples were identical by IR and1H and13C NMR spectroscopy.

Scheme 2.

Along the lines of our previous work involving the 1,3-dipolar cycloaddition reaction of münchnones
with cyclooctatetraene (COT),4b we are currently examining the reaction of COT with 1,3-oxathiolium-
5-olate5 as a route to the pentaprismane ring system. Also, efforts to extend this chemistry to additional
reactions of 1,3-oxathiolium-5-olates and other mesoionic heterocycles are in progress.

In conclusion, we have shown that the mesoionic heterocycle 2,4-diphenyl-1,3-oxathiolium-5-olate (5)
undergoes a tandem 1,3-dipolar cycloaddition reaction with cycloocta-1,5-diene to form cycloadduct7.
This sulfide is easily transformed by oxidation and photochemical extrusion of SO2 to caged hydrocarbon
9 in high yield.
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